<div class="csl-bib-body">
<div class="csl-entry">Bernáth, B., Kutko, K., Wiedmann, S., Young, O., Engelkamp, H., Christianen, P. C. M., Poperezhai, S., Pourovskii, L. V., Khmelevskyi, S., & Kamenskyi, D. (2022). Massive Magnetostriction of the Paramagnetic Insulator KEr(MoO₄)₂ via a Single‐Ion Effect. <i>Advanced Electronic Materials</i>, <i>8</i>(3), Article 2100770. https://doi.org/10.1002/aelm.202100770</div>
</div>
-
dc.identifier.issn
2199-160X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138959
-
dc.description.abstract
The magnetostriction phenomenon, which exists in almost all magnetically ordered materials, is proved to have wide application potential in precision machinery, microdisplacement control, robotics, and other high-tech fields. Understanding the microscopic mechanism behind the magnetostrictive properties of magnetically ordered compounds plays an essential role in realizing technological applications and helps the fundamental understanding of magnetism and superconductivity. In paramagnets, however, the magnetostriction is usually significantly smaller because of the magnetic disorder. Here, the observation of a remarkably strong magnetostrictive response of the insulator paramagnet KEr(MoO₄)₂ is reported on. Using low-temperature magnetization and dilatometry measurements, in combination with ab initio calculations, employing a quasi-atomic treatment of many-body effects, it is demonstrated that the magnetostriction anomaly in KEr(MoO₄)₂ is driven by a single-ion effect. This analysis reveals a strong coupling between the Er³⁺ ions and the crystal lattice due to the peculiar behavior of the magnetic quadrupolar moments of Er³⁺ ions in the applied field, shedding light on the microscopic mechanism behind the massive magnetostrictive response.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Advanced Electronic Materials
-
dc.subject
Magnetostriction
en
dc.subject
Paramagnetic Insulator
en
dc.subject
Single-Ion Effect
en
dc.title
Massive Magnetostriction of the Paramagnetic Insulator KEr(MoO₄)₂ via a Single‐Ion Effect.
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
National Academy of Sciences of Ukraine, Ukraine
-
dc.contributor.affiliation
Radboud University Nijmegen, Netherlands (the)
-
dc.contributor.affiliation
Radboud University Nijmegen, Netherlands (the)
-
dc.contributor.affiliation
National Academy of Sciences of Ukraine, Ukraine
-
dc.type.category
Original Research Article
-
tuw.container.volume
8
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Advanced Electronic Materials
-
tuw.publication.orgunit
E057-15 - Fachbereich Center for Computational Materials Science and Engineering