<div class="csl-bib-body">
<div class="csl-entry">Achleitner, F., Arnold, A., & Mehrmann, V. (2023). Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations. <i>ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK</i>, <i>103</i>(7), Article e202100171. https://doi.org/10.1002/zamm.202100171</div>
</div>
-
dc.identifier.issn
0044-2267
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138993
-
dc.description.abstract
For the classes of finite-dimensional linear time-invariant semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations with constant coefficients, stability and hypocoercivity are discussed and related to concepts from control theory. On the basis of staircase forms, the solution behavior is characterized and connected to the hypocoercivity index of these evolution equations. The results are applied to two infinite-dimensional flow problems.
en
dc.language.iso
en
-
dc.publisher
WILEY-V C H VERLAG GMBH
-
dc.relation.ispartof
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK
-
dc.subject
Applied Mathematics
en
dc.subject
Computational Mechanics
en
dc.title
Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Technische Universität Berlin, Deutschland
-
dc.type.category
Original Research Article
-
tuw.container.volume
103
-
tuw.container.issue
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK