<div class="csl-bib-body">
<div class="csl-entry">Bagheri Ghavam Abadi, B., Feder, T., Fleischner, H., & Subi, C. (2021). Hamiltonian cycles in planar cubic graphs with facial 2-factors, and a new partial solution of Barnette’s Conjecture. <i>Journal of Graph Theory</i>, <i>96</i>(2), 269–288. https://doi.org/10.1002/jgt.22612</div>
</div>
-
dc.identifier.issn
0364-9024
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139090
-
dc.description.abstract
We study the existence of hamiltonian cycles in plane cubic graphs 𝐺 having a facial 2-factor Q. Thus hamiltonicity in 𝐺 is transformed into the existence of a (quasi) spanning tree of faces in the contraction 𝐺∕Q. In particular, we study the case where 𝐺 is the leapfrog extension (called vertex envelope of a plane cubic graph 𝐺₀. As a consequence we prove hamiltonicity in the leapfrog extension of planar cubic cyclically 4-edge-connected bipartite graphs. This and other results of this paper establish partial solutions of Barnette's Conjecture according to which every 3-connected cubic planar bipartite graph is hamiltonian. These results go considerably beyond Goodey's result on this topic.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Journal of Graph Theory
-
dc.subject
Discrete Mathematics and Combinatorics
de
dc.subject
Geometry and Topology
de
dc.title
Hamiltonian cycles in planar cubic graphs with facial 2-factors, and a new partial solution of Barnette's Conjecture
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
269
-
dc.description.endpage
288
-
dc.type.category
Original Research Article
-
tuw.container.volume
96
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Graph Theory
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1002/jgt.22612
-
dc.date.onlinefirst
2020-07-18
-
dc.identifier.eissn
1097-0118
-
dc.description.numberOfPages
20
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity