<div class="csl-bib-body">
<div class="csl-entry">Hamm, T. (2022). <i>Algorithmic Advances via Graph Decomposition</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.108300</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2022.108300
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139153
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Many fundamental and natural problems considered in computer science are known to be NP- hard. This is widely believed to make the existence of efficient algorithms, i.e. algorithms that scale well with respect to the size of their input, unlikely. However the situation may of course change if one imposes structural restrictions on the input. A refined analysis taking this into account is useful – both from the natural theoretical standpoint of asking for a detailed complexity classification, as well as from the practical standpoint of wanting to exploit the structure inherent to real-life instances and applications. The form interesting structural restrictions can take is as diverse as these problems and their instances. Our focus lies on decompositional parameters, the most prominent of which is treewidth. Our results fall within both the study of decompositional parameters, as well as their application.We define and investigate two general decompositional parameter schemes, with different underlying motivations. Firstly, we augment treewidth by conceptually allowing large subgraphs that are forbidden by bounded treewidth, so long as they are in some graph class H. This gives rise to H-treewidth for arbitrary H and allows us to combine treewidth and other helpful graph properties. Secondly, we identify a set of parameters that provide a surprisingly concise shared perspective on, and formalisation of, the most important known decompositional parameters. Algorithmically, we show how this allows us to formulate unified algortihms to approximate the captured parameters.Complementing this fundamental research into decompositional parameters, we present a set of concrete algorithms for near-planar extension of partial graph drawings.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Graph decompositions
en
dc.subject
Parameterized algorithms
en
dc.subject
Decompositional parameters
en
dc.subject
Graph drawing extension
en
dc.title
Algorithmic Advances via Graph Decomposition
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2022.108300
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Thekla Hamm
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Woltran, Stefan
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16727811
-
dc.description.numberOfPages
196
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.cerifentitytype
Publications
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity