<div class="csl-bib-body">
<div class="csl-entry">Buffa, A., Gantner, G., Giannelli, C., Praetorius, D., & Vázquez, R. (2022). Mathematical Foundations of Adaptive Isogeometric Analysis. <i>Archives of Computational Methods in Engineering</i>, <i>29</i>, 4479–4555. https://doi.org/10.1007/s11831-022-09752-5</div>
</div>
-
dc.identifier.issn
1134-3060
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139157
-
dc.description.abstract
This paper reviews the state of the art and discusses recent developments in the field of adaptive isogeometric analysis, with special focus on the mathematical theory. This includes an overview of available spline technologies for the local resolution of possible singularities as well as the state-of-the-art formulation of convergence and quasi-optimality of adaptive algorithms for both the finite element method and the boundary element method in the frame of isogeometric analysis.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Archives of Computational Methods in Engineering
-
dc.subject
isogeometric analysis
en
dc.title
Mathematical Foundations of Adaptive Isogeometric Analysis