<div class="csl-bib-body">
<div class="csl-entry">Daniilidis, A., Haddou, M., & Ley, O. (2022). A convex function satisfying the Łojasiewicz inequality but failing the gradient conjecture both at zero and infinity. <i>Bulletin of the London Mathematical Society</i>, <i>54</i>(2), 590–608. https://doi.org/10.1112/blms.12586</div>
</div>
-
dc.identifier.issn
0024-6093
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139166
-
dc.description.abstract
We construct an example of a smooth convex function on the plane with a strict minimum at zero, which is real analytic except at zero, for which Thom's gradient conjecture fails both at zero and infinity. More precisely, the gradient orbits of the function spiral around zero and at infinity. Besides, the function satisfies the Łojasiewicz gradient inequality at zero.
-
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Bulletin of the London Mathematical Society
-
dc.subject
Thom´s gradient
en
dc.title
A convex function satisfying the Łojasiewicz inequality but failing the gradient conjecture both at zero and infinity