<div class="csl-bib-body">
<div class="csl-entry">Holly, S., Heel, R., Katic, D., Schoeffl, L., Stiftinger, A., Holzner, P., Kaufmann, T., Haslhofer, B., Schall, D., Heitzinger, C., & Kemnitz, J. (2022). Autoencoder Based Anomaly Detection and Explained Fault Localization in Industrial Cooling Systems. In P. Do, G. Michau, & C. Ezhilarasu (Eds.), <i>Proceedings of the 7th European Conference of the Prognostics and Health Management Society 202</i> (pp. 200–210). PHM Society. https://doi.org/10.36001/phme.2022.v7i1.3349</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139228
-
dc.description.abstract
Anomaly detection in large industrial cooling systems is very challenging due to the high data dimensionality, inconsistent sensor recordings, and lack of labels. The state of the art for automated anomaly detection in these systems typically relies on expert knowledge and thresholds. However, data is viewed isolated and complex, multivariate relationships are neglected. In this work, we present an autoencoder based end-to-end workflow for anomaly detection suitable for multivariate time series data in large industrial cooling systems, including explained fault localization and root cause analysis based on expert knowledge. We identify system failures using a threshold on the total reconstruction error (autoencoder reconstruction error including all sensor signals). For fault localization, we compute the individual reconstruction error (autoencoder reconstruction error for each sensor signal) allowing us to identify the signals that contribute most to the total reconstruction error. Expert knowledge is provided via look-up table enabling root-cause analysis and assignment to the affected subsystem. We demonstrated our findings in a cooling system unit including 34 sensors over a 8-months’ time period using 4-fold cross validation approaches and automatically created labels based on thresholds provided by domain experts. Using 4-fold cross validation, we reached a F1-score of 0.56, whereas the autoencoder results showed a higher consistency score (CS of 0.92) compared to the automatically created labels (CS of 0.62) – indicating that the
anomaly is recognized in a very stable manner. The automatically created labels, however, detected anomaly earlier. The main anomaly was found by the autoencoder and automatically created labels, and was also recorded in the log files. Further, the explained fault localization highlighted the most affected component for the main anomaly in a very consistent manner.
-
dc.language.iso
en
-
dc.subject
Anomaly Detection
en
dc.subject
Explained Fault
en
dc.subject
multivariate time series data
en
dc.subject
expert knowledge
en
dc.subject
autoencoder reconstruction
en
dc.subject
cooling system
en
dc.title
Autoencoder Based Anomaly Detection and Explained Fault Localization in Industrial Cooling Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Technische Universität Wien
-
dc.contributor.affiliation
Siemens Technology, Wien
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.contributor.affiliation
Hauser, Linz
-
dc.contributor.affiliation
Hauser, Linz
-
dc.contributor.affiliation
Technische Universität Wien
-
dc.contributor.affiliation
Siemens Technology, Wien
-
dc.contributor.affiliation
Siemens Technology
-
dc.contributor.editoraffiliation
University of Lorraine
-
dc.contributor.editoraffiliation
Stadler Service AG
-
dc.contributor.editoraffiliation
IVHM Centre, Cranfield University
-
dc.relation.isbn
978-1-936263-36-3
-
dc.description.startpage
200
-
dc.description.endpage
210
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 7th European Conference of the Prognostics and Health Management Society 202
-
tuw.container.volume
7
-
tuw.relation.publisher
PHM Society
-
tuw.relation.publisherplace
241 Woodland Drive, State College, PA 16803
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-2 - Forschungsgruppe Maschinelles Lernen und Unsicherheitsquantifizierung
-
tuw.publisher.doi
10.36001/phme.2022.v7i1.3349
-
dc.description.numberOfPages
11
-
tuw.editor.orcid
0000-0001-6882-2906
-
tuw.event.name
7th Proceedings of the European Conference of the PHM Society 2022
en
tuw.event.startdate
06-07-2022
-
tuw.event.enddate
08-07-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Turin
-
tuw.event.country
IT
-
tuw.event.presenter
Holly, Stephanie
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
Technische Universität Wien
-
crisitem.author.dept
Siemens Technology, Wien
-
crisitem.author.dept
Austrian Institute of Technology
-
crisitem.author.dept
Hauser, Linz
-
crisitem.author.dept
Hauser, Linz
-
crisitem.author.dept
Technische Universität Wien
-
crisitem.author.dept
E370-01 - Forschungsbereich Energiesysteme und Netze
-
crisitem.author.dept
E192 - Institut für Logic and Computation
-
crisitem.author.dept
Siemens Technology, Wien
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
Siemens Technology
-
crisitem.author.parentorg
E370 - Institut für Energiesysteme und Elektrische Antriebe
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering