<div class="csl-bib-body">
<div class="csl-entry">Danczul, T., & Schöberl, J. (2022). A reduced basis method for fractional diffusion operators I. <i>Numerische Mathematik</i>, <i>151</i>(2), 369–404. https://doi.org/10.1007/s00211-022-01287-y</div>
</div>
-
dc.identifier.issn
0029-599X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139284
-
dc.description.abstract
We propose and analyze new numerical methods to evaluate fractional norms and apply fractional powers of elliptic operators. By means of a reduced basis method, we project to a small dimensional subspace where explicit diagonalization via the eigensystem is feasible. The method relies on several independent evaluations of (I-ti2Δ)-1f, which can be computed in parallel. We prove exponential convergence rates for the optimal choice of sampling points ti, provided by the so-called Zolotarëv points. Numerical experiments confirm the analysis and demonstrate the efficiency of our algorithm.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Numerische Mathematik
-
dc.subject
Fractional diffusion
en
dc.subject
Reduced basis method
en
dc.subject
Hilbert space interpolation
en
dc.title
A reduced basis method for fractional diffusion operators I