<div class="csl-bib-body">
<div class="csl-entry">Daus, E., Ptashnyk, M., & Raithel, C. (2022). Derivation of a fractional cross-diffusion system as the limit of a stochastic many-particle system driven by Lévy noise. <i>Journal of Differential Equations</i>, <i>309</i>, 386–426. https://doi.org/10.1016/j.jde.2021.11.027</div>
</div>
-
dc.identifier.issn
0022-0396
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139285
-
dc.description.abstract
In this article a fractional cross-diffusion system is derived as the rigorous many-particle limit of a multi-species system of moderately interacting particles that is driven by Lévy noise. The form of the mutual interaction is motivated by the porous medium equation with fractional potential pressure. Our approach is based on the techniques developed by Oelschläger (1989) and Stevens (2000), in the latter of which the convergence of a regularization of the empirical measure to the solution of a correspondingly regularized macroscopic system is shown. A well-posedness result and the non-negativity of solutions are proved for the regularized macroscopic system, which then yields the same results for the non-regularized fractional cross-diffusion system in the limit.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Differential Equations
-
dc.subject
Cross-diffusion systems
en
dc.subject
Fractional diffusion
en
dc.subject
Lévy processes
en
dc.subject
Stochastic many-particle systems
en
dc.title
Derivation of a fractional cross-diffusion system as the limit of a stochastic many-particle system driven by Lévy noise