<div class="csl-bib-body">
<div class="csl-entry">Huo, X., Jüngel, A., & Tzavaras, A. E. (2022). Weak-Strong Uniqueness for Maxwell-Stefan Systems. <i>SIAM Journal on Mathematical Analysis</i>, <i>54</i>(3), 3215–3252. https://doi.org/10.1137/21M145210X</div>
</div>
-
dc.identifier.issn
0036-1410
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139301
-
dc.description.abstract
The weak-strong uniqueness for Maxwell-Stefan systems and some generalized systems is proved. The corresponding parabolic cross-diffusion equations are considered in a bounded domain with no-flux boundary conditions. The key points of the proofs are various inequalities for the relative entropy associated with the systems and the analysis of the spectrum of a quadratic form capturing the frictional dissipation. The latter task is complicated by the singular nature of the diffusion matrix. This difficulty is addressed by proving its positive definiteness on a subspace and using the Bott-Duffin matrix inverse. The generalized Maxwell-Stefan systems are shown to cover several known cross-diffusion systems for the description of tumor growth and physical vapor deposition processes.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)