<div class="csl-bib-body">
<div class="csl-entry">Coopman, M., & Rubey, M. (2022). An equidistribution involving invisible inversions. <i>Enumerative Combinatorics and Applications</i>, <i>2</i>(3), Article #S2R19. https://doi.org/10.54550/ECA2022V2S3R19</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139326
-
dc.description.abstract
We provide two explicit bijections demonstrating that, among permutations, the number of invisible inversions is equidistributed with the number of occurrences of the vincular pattern 13-2 after sorting the set of runs.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
University of Haifa
-
dc.relation.ispartof
Enumerative Combinatorics and Applications
-
dc.subject
bijections
en
dc.subject
invisible inversions
en
dc.subject
permutation statistics
en
dc.title
An equidistribution involving invisible inversions
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Florida, United States of America (the)
-
dc.relation.grantno
P29275-N35
-
dc.type.category
Original Research Article
-
tuw.container.volume
2
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Das Phänomen des zyklischen Siebens
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Enumerative Combinatorics and Applications
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.54550/ECA2022V2S3R19
-
dc.identifier.articleid
#S2R19
-
dc.identifier.eissn
2710-2335
-
dc.description.numberOfPages
7
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P29275-N35
-
crisitem.author.dept
University of Florida
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie