<div class="csl-bib-body">
<div class="csl-entry">Arnold, A., & Signorello, B. (2022). Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. <i>Kinetic and Related Models</i>, <i>15</i>(5), 753–773. https://doi.org/10.3934/krm.2022009</div>
</div>
-
dc.identifier.issn
1937-5093
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139357
-
dc.description.abstract
This paper is concerned with finding Fokker-Planck equations in ℝᵈ with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum. Such an “optimal” Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an 𝐿²–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
AMER INST MATHEMATICAL SCIENCES-AIMS
-
dc.relation.ispartof
Kinetic and Related Models
-
dc.subject
Fastest decay
en
dc.subject
Fokker-planck equation
en
dc.subject
Hypocoercivity
en
dc.subject
Non-symmetric perturbation
en
dc.subject
Time-dependent coefficients
en
dc.title
Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium