DC Field
Value
Language
dc.contributor.author
Hirle, Anna Viktoria
-
dc.contributor.author
Fuger, Christoph
-
dc.contributor.author
Hahn, Rainer
-
dc.contributor.author
Kutrowatz, Philip
-
dc.contributor.author
Weiss, Maximilian
-
dc.contributor.author
Limbeck, Andreas
-
dc.contributor.author
Hunold, Oliver
-
dc.contributor.author
Polcik, Peter
-
dc.contributor.author
Riedl-Tragenreif, Helmut
-
dc.date.accessioned
2023-01-05T10:31:56Z
-
dc.date.available
2023-01-05T10:31:56Z
-
dc.date.issued
2022-10-05
-
dc.identifier.citation
<div class="csl-bib-body">
<div class="csl-entry">Hirle, A. V., Fuger, C., Hahn, R., Kutrowatz, P., Weiss, M., Limbeck, A., Hunold, O., Polcik, P., & Riedl-Tragenreif, H. (2022, October 5). <i>Mechanical Properties and Fracture Behavior of TiB2+z Thin Films</i> [Poster Presentation]. Nanomechanical Testing in Materials Research and Development VIII (Split), Split, Croatia. http://hdl.handle.net/20.500.12708/139365</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139365
-
dc.description.abstract
Hexagonal transition metal diborides are promising candidates for future protective coating materials as they exhibit an interesting mix of properties, i.e., high melting temperature, high hardness (~ 40 GPa), and excellent thermal stability. However, a significant drawback is their inherent brittleness, limiting possible long-term applications due to premature failure and subsequent environmental attacks. Within this study, we want to describe the fracture characteristics of physical vapor deposited titanium diboride thin films in more detail.
We synthesized DC magnetron sputtered TiB2+z with a broad variation in boron contents (TiB2.07 to TiB4.42) and investigated their elemental composition, morphology, and mechanical properties (hardness, Young's modulus, and fracture toughness). According to the literature, the boron-rich tissue phase is important regarding the mechanical properties of over-stochiometric TiB2+z thin films [1].TEM investigations verified the presence of tissue phase and a decrease in grain size with increasing boron concentration. Furthermore, structural analysis confirmed the apparent correlation between the deposition pressure and a preferred texture within the TiB2+z thin films. To gain maximum hardness values (~40 GPa), a (0001) orientation (in growth direction) is essential, whereas for ("10" "1" ̅"1" ) and (1000) oriented coatings, we observed a decrease in hardness of about 10 GPa. This strong anisotropic behavior (concerning active slip events) of hexagonal diborides was theoretically confirmed for ZrB2 and TiB2 and experimentally for WB2-z based thin films [2-4]. We conducted in-situ cantilever bending tests to determine the intrinsic fracture toughness – excluding possible substrate influences. These experiments revealed an almost linear decrease in fracture toughness from KIC = 3.02 ± 0.13 MPa√m for TiB2.43 to KIC = 2.51 ± 0.14 MPa√m for TiB4.42. We attribute this decrease, accompanied by a reduction in hardness, to the negative impact of excess boron (tissue phase).
In summary, our results highlight the impact of texture and morphological design on the mechanical properties of TiB2+z based coatings. The 0001 texture emerged to be dominant concerning the hardness, whereas the constitution of the tissue phase mainly influences the fracture toughness.
References
[1] P. H. Mayrhofer, C. Mitterer, J. G. Wen, J. E. Greene, and I. Petrov, “Self-organized nanocolumnar structure in superhard TiB2 thin films,” Appl. Phys. Lett., vol. 86, no. 13, p. 131909, 2005, doi: 10.1063/1.1887824.
[2] B. Hunter et al., “Investigations into the slip behavior of zirconium diboride,” J. Mater. Res., vol. 31, no. 18, pp. 2749–2756, 2016, doi: 10.1557/jmr.2016.201.
[3] S. Guo and H. Sun, “Superhardness Induced by Grain Boundary Vertical Sliding in (001)-textured ZrB 2 and TiB 2 Nano Films,” Acta Materialia, vol. 218, p. 117212, 2021, doi: 10.1016/j.actamat.2021.117212.
[4] C. Fuger et al., “Anisotropic super-hardness of hexagonal WB 2± z thin films,” Materials Research Letters, vol. 10, no. 2, pp. 70–77, 2022, doi: 10.1080/21663831.2021.2021308.
en
dc.description.sponsorship
CDG Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.subject
Thin films
en
dc.subject
Physical Vapor Deposition
en
dc.subject
Micromechanical testing
en
dc.subject
Fracture toughness
en
dc.subject
Diborides
en
dc.title
Mechanical Properties and Fracture Behavior of TiB2+z Thin Films
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Oerlikon (Liechtenstein), Liechtenstein
-
dc.contributor.affiliation
Plansee (Germany), Germany
-
dc.relation.grantno
CDL-SEC
-
dc.type.category
Poster Presentation
-
tuw.project.title
Oberflächentechnik von hochbeanspruchten Präzisionskomponenten
-
tuw.researchinfrastructure
Röntgenzentrum
-
tuw.researchinfrastructure
Universitäre Service-Einrichtung für Transmissionselektronenmikroskopie
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M1
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Surfaces and Interfaces
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.linking
https://engconf.us/wp-content/uploads/2022/09/Final-Program-WEB-21-AN-1.pdf
-
tuw.publication.orgunit
E308-01-2 - Forschungsgruppe Angewandte Oberflächentechnik
-
tuw.publication.orgunit
E164-04-1 - Forschungsgruppe Elektrochemische Energieumwandlung
-
tuw.publication.orgunit
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
tuw.author.orcid
0000-0003-0345-6962
-
tuw.author.orcid
0000-0003-2685-4808
-
tuw.author.orcid
0000-0002-4312-9256
-
tuw.author.orcid
0000-0001-5042-2445
-
tuw.author.orcid
0000-0003-3111-0029
-
tuw.author.orcid
0000-0002-8108-1185
-
tuw.event.name
Nanomechanical Testing in Materials Research and Development VIII (Split)
en
tuw.event.startdate
02-10-2022
-
tuw.event.enddate
07-10-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Split
-
tuw.event.country
HR
-
tuw.event.presenter
Hirle, Anna Viktoria
-
wb.sciencebranch
Nanotechnologie
-
wb.sciencebranch
Werkstofftechnik
-
wb.sciencebranch.oefos
2100
-
wb.sciencebranch.oefos
2050
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18co
-
item.openairetype
conference poster not in proceedings
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E308-01-2 - Forschungsgruppe Angewandte Oberflächentechnik
-
crisitem.author.dept
E308-01-2 - Forschungsgruppe Angewandte Oberflächentechnik
-
crisitem.author.dept
E308-01-2 - Forschungsgruppe Angewandte Oberflächentechnik
-
crisitem.author.dept
E308-01-2 - Forschungsgruppe Angewandte Oberflächentechnik
-
crisitem.author.dept
E164-04-1 - Forschungsgruppe Elektrochemische Energieumwandlung
-
crisitem.author.dept
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
crisitem.author.dept
Oerlikon (Liechtenstein)
-
crisitem.author.dept
E308-01-2 - Forschungsgruppe Angewandte Oberflächentechnik
-
crisitem.author.orcid
0000-0003-0345-6962
-
crisitem.author.orcid
0000-0003-2685-4808
-
crisitem.author.orcid
0000-0002-7322-8108
-
crisitem.author.orcid
0000-0002-4312-9256
-
crisitem.author.orcid
0000-0001-5042-2445
-
crisitem.author.orcid
0000-0003-3111-0029
-
crisitem.author.orcid
0000-0002-8108-1185
-
crisitem.author.parentorg
E308-01 - Forschungsbereich Werkstoffwissenschaft
-
crisitem.author.parentorg
E308-01 - Forschungsbereich Werkstoffwissenschaft
-
crisitem.author.parentorg
E308-01 - Forschungsbereich Werkstoffwissenschaft
-
crisitem.author.parentorg
E308-01 - Forschungsbereich Werkstoffwissenschaft
-
crisitem.author.parentorg
E164-04 - Forschungsbereich Technische Elektrochemie
-
crisitem.author.parentorg
E164-01 - Forschungsbereich Imaging und Instrumentelle Analytische Chemie
-
crisitem.author.parentorg
E308-01 - Forschungsbereich Werkstoffwissenschaft
-
crisitem.project.funder
Christian Doppler Forschungsgesells
-
crisitem.project.grantno
CDL-SEC
-
Appears in Collections: