<div class="csl-bib-body">
<div class="csl-entry">Bargetz, C., Debrouwere, A., & Nigsch, E. (2022). Sequence space representations for spaces of smooth functions and distributions via Wilson bases. <i>Proceedings of the American Mathematical Society</i>, <i>150</i>(9), 3841–3852. https://doi.org/10.1090/proc/15895</div>
</div>
-
dc.identifier.issn
0002-9939
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139376
-
dc.description.abstract
We provide explicit sequence space representations for the test function and distribution spaces occurring in the Valdivia-Vogt structure tables by making use of Wilson bases generated by compactly supported smooth windows. Furthermore, we show that these kind of bases are common unconditional Schauder bases for all separable spaces occurring in these tables. Our work implies that the Valdivia-Vogt structure tables for test functions and distributions may be interpreted as one large commutative diagram.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
AMER MATHEMATICAL SOC
-
dc.relation.ispartof
Proceedings of the American Mathematical Society
-
dc.subject
distribution spaces
en
dc.subject
sequence space representations
en
dc.subject
Test function spaces
en
dc.subject
Wilson bases
en
dc.title
Sequence space representations for spaces of smooth functions and distributions via Wilson bases