<div class="csl-bib-body">
<div class="csl-entry">Nannen, L., & Wess, M. (2022). Complex-scaled infinite elements for resonance problems in heterogeneous open systems. <i>Advances in Computational Mathematics</i>, <i>48</i>(2), Article 8. https://doi.org/10.1007/s10444-021-09923-1</div>
</div>
-
dc.identifier.issn
1019-7168
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139379
-
dc.description.abstract
The technique of complex scaling for time harmonic wave-type equations relies on a complex coordinate stretching to generate exponentially decaying solutions. In this work, we use a Galerkin method with ansatz functions with infinite support to discretize complex-scaled scalar Helmholtz-type resonance problems with inhomogeneous exterior domains. We show super-algebraic convergence of the method with respect to the number of unknowns in radial direction. Numerical examples underline the theoretical findings.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Advances in Computational Mathematics
-
dc.subject
Complex scaling
en
dc.subject
Helmholtz-type resonance problems
en
dc.subject
Heterogeneous exterior domains
en
dc.subject
Infinite elements
en
dc.title
Complex-scaled infinite elements for resonance problems in heterogeneous open systems