<div class="csl-bib-body">
<div class="csl-entry">Khodadadian, A., Parvizi, M., Teshnehlab, M., & Heitzinger, C. (2022). Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks. <i>Sensors</i>, <i>22</i>(13), Article 4785. https://doi.org/10.3390/s22134785</div>
</div>
-
dc.identifier.issn
1424-8220
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139381
-
dc.description.abstract
Silicon nanowire field-effect transistors are promising devices used to detect minute amounts of different biological species. We introduce the theoretical and computational aspects of forward and backward modeling of biosensitive sensors. Firstly, we introduce a forward system of partial differential equations to model the electrical behavior, and secondly, a backward Bayesian Markov-chain Monte-Carlo method is used to identify the unknown parameters such as the concentration of target molecules. Furthermore, we introduce a machine learning algorithm according to multilayer feed-forward neural networks. The trained model makes it possible to predict the sensor behavior based on the given parameters.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
MDPI
-
dc.relation.ispartof
Sensors
-
dc.subject
field-effect sensors
en
dc.subject
Bayes Theorem
en
dc.subject
Monte Carlo Method
en
dc.subject
Bayesian inversion
en
dc.subject
biosensors
en
dc.subject
charge transport
en
dc.subject
Algorithms
en
dc.subject
inverse modeling
en
dc.subject
neural networks
en
dc.subject
Nanowires
en
dc.title
Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks