<div class="csl-bib-body">
<div class="csl-entry">Carroy, R., Medini, A., & Müller, S. (2022). Constructing Wadge classes. <i>Bulletin of Symbolic Logic</i>, <i>28</i>(2), 207–257. https://doi.org/10.1017/bsl.2022.7</div>
</div>
-
dc.identifier.issn
1079-8986
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139400
-
dc.description.abstract
We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level ω1 (that is, the ones that are closed under Borel preimages) and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep (namely, that every non-selfdual Wadge class can be expressed as the result of a Hausdorff operation applied to the open sets). The exposition is self-contained, except for facts from classical descriptive set theory.
en
dc.language.iso
en
-
dc.publisher
CAMBRIDGE UNIV PRESS
-
dc.relation.ispartof
Bulletin of Symbolic Logic
-
dc.subject
Set theory
en
dc.subject
Topology
en
dc.title
Constructing Wadge classes
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Turin, Italy
-
dc.description.startpage
207
-
dc.description.endpage
257
-
dc.type.category
Original Research Article
-
tuw.container.volume
28
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Bulletin of Symbolic Logic
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
tuw.publisher.doi
10.1017/bsl.2022.7
-
dc.identifier.eissn
1943-5894
-
dc.description.numberOfPages
51
-
tuw.author.orcid
0000-0002-7224-187X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.languageiso639-1
en
-
crisitem.author.dept
University of Turin
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.orcid
0000-0002-7224-187X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie