<div class="csl-bib-body">
<div class="csl-entry">Dow, D., Gopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2022). Convergence analysis of some tent-based schemes for linear hyperbolic systems. <i>Mathematics of Computation</i>, <i>91</i>(334), 699–733. https://doi.org/10.1090/mcom/3686</div>
</div>
-
dc.identifier.issn
0025-5718
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139402
-
dc.description.abstract
Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.
en
dc.language.iso
en
-
dc.publisher
AMER MATHEMATICAL SOC
-
dc.relation.ispartof
Mathematics of Computation
-
dc.subject
Advancing front
en
dc.subject
Causality
en
dc.subject
Discontinuous galerkin
en
dc.subject
Friedrichs system
en
dc.subject
Mtp scheme
en
dc.subject
Sat timestepping
en
dc.subject
Semidiscrete
en
dc.subject
Spacetime
en
dc.subject
Stability
en
dc.subject
Taylor timestepping
en
dc.subject
Tent pitching
en
dc.title
Convergence analysis of some tent-based schemes for linear hyperbolic systems