<div class="csl-bib-body">
<div class="csl-entry">Hollaus, K., & Schobinger, M. (2022). Multiscale Finite Element Formulations for 2D/1D Problems. In S. BARMADA, Elsherbeni Atef, & Aaen Peter (Eds.), <i>Proceedings 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC)</i> (pp. 1–2). IEEE. https://doi.org/10.1109/CEFC55061.2022.9940831</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139527
-
dc.description.abstract
Approaches for multiscale finite element methods (MSFEM) are proposed which are essentially more efficient while maintaining the accuracy of past 2D/1D approaches. They are based on a magnetic vector potential or a current vector potential. Known currents in conductors are replaced by their Biot-Savart-fields. Boundary conditions allow planes of symmetry. All presented approaches consider eddy currents and preserve the edge effect. A segment of a fictitious electrical machine has been studied to demonstrate the accuracy and the low computational costs of the 2D/1D MSFEMs.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
2D/1D multiscale finite element method MSFEM
en
dc.subject
Biot-Savart-field
en
dc.subject
eddy currents
en
dc.subject
edge effect
en
dc.subject
thin iron sheets
en
dc.title
Multiscale Finite Element Formulations for 2D/1D Problems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-6654-6833-6
-
dc.relation.doi
10.1109/CEFC55061.2022
-
dc.description.startpage
1
-
dc.description.endpage
2
-
dc.relation.grantno
P 31926-N35
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC)