<div class="csl-bib-body">
<div class="csl-entry">Brune, B., Scherrer, W., & Bura, E. (2022). A state-space approach to time-varying reduced-rank regression. <i>Econometric Reviews</i>, <i>41</i>(8), 895–917. https://doi.org/10.1080/07474938.2022.2073743</div>
</div>
-
dc.identifier.issn
0747-4938
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139532
-
dc.description.abstract
We propose a new approach to reduced-rank regression that allows for time-variation in the regression coefficients. The Kalman filter based estimation allows for usage of standard methods and easy implementation of our procedure. The EM-algorithm ensures convergence to a local maximum of the likelihood. Our estimation approach in time-varying reduced-rank regression performs well in simulations, with amplified competitive advantage in time series that experience large structural changes. We illustrate the performance of our approach with a simulation study and two applications to stock index and Covid-19 case data.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.publisher
TAYLOR & FRANCIS INC
-
dc.relation.ispartof
Econometric Reviews
-
dc.subject
EM-algorithm
en
dc.subject
Kalman filter
en
dc.subject
time-varying parameters
en
dc.subject
vector error correction model
en
dc.title
A state-space approach to time-varying reduced-rank regression