<div class="csl-bib-body">
<div class="csl-entry">Nawratil, G. (2023). Generalizing Continuous Flexible Kokotsakis Belts of the Isogonal Type. In L.-Y. Cheng (Ed.), <i>ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics</i> (pp. 115–126). https://doi.org/10.1007/978-3-031-13588-0_10</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139549
-
dc.description.abstract
A. Kokotsakis studied the following problem in 1932: Given is a rigid closed polygonal line (planar or non-planar), which is surrounded by a polyhedral strip, where at each polygon vertex three faces meet. Determine the geometries of these closed strips with a continuous mobility. On the one side, we generalize this problem by allowing the faces, which are adjacent to polygon line-segments, to be skew; i.e. to be non-planar. But on the other side, we restrict to the case where the four angles associated with each polygon vertex fulfill the so-called isogonality condition that both pairs of opposite angles are equal or supplementary. In more detail, we study the case where the polygonal line is a skew quad, as this corresponds to a (3 × 3 ) building block of a so-called V-hedra composed of skew quads. The latter also gives a positive answer to a question posed by R. Sauer in his book of 1970 whether continuous flexible skew quad surfaces exist.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
Continuous flexibility
en
dc.subject
Kokotsakis belt
en
dc.subject
Skew quad surfaces
en
dc.title
Generalizing Continuous Flexible Kokotsakis Belts of the Isogonal Type
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-13588-0
-
dc.description.startpage
115
-
dc.description.endpage
126
-
dc.relation.grantno
F77
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics
-
tuw.container.volume
146
-
tuw.peerreviewed
true
-
tuw.project.title
Advanced Computational Design
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publisher.doi
10.1007/978-3-031-13588-0_10
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0001-8639-9064
-
tuw.event.name
20th International Conference on Geometry and Graphics (ICGG 2022)
en
tuw.event.startdate
15-08-2022
-
tuw.event.enddate
19-08-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Sao Paulo
-
tuw.event.country
BR
-
tuw.event.presenter
Nawratil, Georg
-
tuw.presentation.online
Online
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
crisitem.project.grantno
F77
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie