<div class="csl-bib-body">
<div class="csl-entry">Di Sante, D., Medvidović, M., Toschi, A., Sangiovanni, G., Franchini, C., Sengupta, A., & Millis, A. J. (2022). Deep Learning the Functional Renormalization Group. <i>Physical Review Letters</i>, <i>129</i>(13), 136402-1-136402–136407. https://doi.org/10.1103/PhysRevLett.129.136402</div>
</div>
-
dc.identifier.issn
0031-9007
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139693
-
dc.description.abstract
We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t-t^{'} Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review Letters
-
dc.subject
Deep Learning
en
dc.subject
functional renormalization group
en
dc.subject
Hubbard model
en
dc.title
Deep Learning the Functional Renormalization Group