<div class="csl-bib-body">
<div class="csl-entry">Zhao, J., Li, Y., Matgen, P., Pelich, R., Hostache, R., Wagner, W., & Chini, M. (2022). Prior Information in Support of Deep Learning Methods to Map Floodwater in Urbanized Areas. In <i>Proceedings IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium</i> (pp. 5216–5219). https://doi.org/10.1109/IGARSS46834.2022.9883027</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139717
-
dc.description.abstract
Due to the complexity of urban environments, the synthetic aperture radar (SAR) based mapping of floodwater is impacted by different factors such as water depth, building orientation and the density of built-up areas. Several studies have proven that both SAR multitemporal intensity and interferometric SAR (InSAR) coherence data acquired in VV and VH polarizations support the urban flood mapping. We propose a deep learning (DL) based method using dual-polarization Sentinel-1 multitemporal intensity and coherence data combined with prior information to map floodwater in urbanized areas. The proposed method aims at mapping flooded areas in urbanized regions and bare soils/sparsely vegetated areas within the entire frame of a Sentinel-1 image. In this paper, our method is evaluated for the Houston (US) urban flood event in 2017 via a qualitative and quantitative comparison with two established DL models. The proposed method has the lowest number of false alarms in flooded urban areas, indicating that the prior information from the probabilistic urban mask is valuable.
en
dc.language.iso
en
-
dc.subject
deep learning
en
dc.subject
multi-temporal SAR
en
dc.subject
U-Net
en
dc.subject
urban flood mapping
en
dc.subject
urban-aware
en
dc.title
Prior Information in Support of Deep Learning Methods to Map Floodwater in Urbanized Areas
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.relation.isbn
978-1-6654-2792-0
-
dc.relation.doi
10.1109/IGARSS46834.2022
-
dc.description.startpage
5216
-
dc.description.endpage
5219
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
-
tuw.container.volume
2022-July
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120-01 - Forschungsbereich Fernerkundung
-
tuw.publisher.doi
10.1109/IGARSS46834.2022.9883027
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0002-9638-3792
-
tuw.author.orcid
0000-0002-4313-3116
-
tuw.author.orcid
0000-0002-8109-6010
-
tuw.author.orcid
0000-0001-7704-6857
-
tuw.author.orcid
0000-0002-9094-0367
-
tuw.event.name
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium