<div class="csl-bib-body">
<div class="csl-entry">Wödlinger, M., Reiter, M., Weijler, L., Maurer-Granofszky, M., Schumich, A., Sajaroff, E., Groeneveld-Krentz, S., Rossi Jorge, Karawajew, L., Ratei, R., & Dworzak, M. (2022). Automated identification of cell populations in flow cytometry data with transformers. <i>Computers in Biology and Medicine</i>, <i>144</i>, Article 105314. https://doi.org/10.1016/j.compbiomed.2022.105314</div>
</div>
-
dc.identifier.issn
0010-4825
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139741
-
dc.description.abstract
Acute Lymphoblastic Leukemia (ALL) is the most frequent hematologic malignancy in children and adolescents. A strong prognostic factor in ALL is given by the Minimal Residual Disease (MRD), which is a measure for the number of leukemic cells persistent in a patient. Manual MRD assessment from Multiparameter Flow Cytometry (FCM) data after treatment is time-consuming and subjective. In this work, we present an automated method to compute the MRD value directly from FCM data. We present a novel neural network approach based on the transformer architecture that learns to directly identify blast cells in a sample. We train our method in a supervised manner and evaluate it on publicly available ALL FCM data from three different clinical centers. Our method reaches a median F1 score of ≈0.94 when evaluated on 519 B-ALL samples and shows better results than existing methods on 4 different datasets.
en
dc.description.sponsorship
Wirtschaftsagentur Wien
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Computers in Biology and Medicine
-
dc.subject
Adolescent
en
dc.subject
Child
en
dc.subject
Flow Cytometry
en
dc.subject
Humans
en
dc.subject
Neoplasm, Residual
en
dc.subject
Automated gating
en
dc.subject
Deep learning
en
dc.subject
Multiparameter flow cytometry
en
dc.subject
Self-attention
en
dc.subject
Precursor Cell Lymphoblastic Leukemia-Lymphoma
en
dc.title
Automated identification of cell populations in flow cytometry data with transformers