<div class="csl-bib-body">
<div class="csl-entry">Bernhart, C., & Kampel, M. (2022). AI Based Actors Identification with High Intra-Class Variations. In <i>Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2022)</i>. ICECCME 2022, Male, Maldives.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139757
-
dc.description.abstract
While deep learning based face recognition sur-
passes human performance in constrained settings, it still strug-
gles to achieve similar results applied in completely unconstrained
settings. This paper explores the effectiveness of state-of-the-art
face recognition models in the specific case of identifying actors
in a historical photography collection of a Theatre Museum.
Actors can be pictured at different angles and poses, at a
different age, with masks and costumes leading to strong intra-
class variations. In addition, images might show signs of decay
due to their historical nature, further increasing the difficulty for
a face recognition model to make correct predictions. This paper
shows that ElasticFace, a face recognition model trained using
a novel learning loss strategy, achieves 79.6% accuracy on the
museum’s photo database. Based on those outcomes, deploying
face recognition to analyse historical image collections delivers
valuable results for historians.
en
dc.language.iso
en
-
dc.subject
Actor Identification
en
dc.subject
deep learning
en
dc.subject
face recognition
en
dc.subject
face detection
en
dc.subject
historical images collection
en
dc.subject
high intra-class variations
en
dc.title
AI Based Actors Identification with High Intra-Class Variations
-
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2022)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-5217-2854
-
tuw.event.name
ICECCME 2022
-
tuw.event.startdate
16-11-2022
-
tuw.event.enddate
18-11-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Male
-
tuw.event.country
MV
-
tuw.event.presenter
Kampel, Martin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0002-5217-2854
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology