<div class="csl-bib-body">
<div class="csl-entry">Raith, P., Rausch, T., Prüller, P., Furutanpey, A., & Dustdar, S. (2022). An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques. In <i>2022 IEEE International Conference on Cloud Engineering (IC2E)</i> (pp. 22–28). IEEE. https://doi.org/10.1109/IC2E55432.2022.00010</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139762
-
dc.description.abstract
This paper presents a framework for defining, performing, and analyzing distributed load testing experiments for benchmarking edge-cloud clusters. This end-to-end workflow helps researchers build reproducible environments to evaluate cluster management techniques. Our implementation extends the open source tool Galileo by adding support for distributed execution on Kubernetes clusters, additional system monitoring instruments, as well as out-of-the box experiment workloads. We focus on providing tools that run across popular CPU architectures and provide a set of representative workloads, such as edge AI functions. We demonstrate our framework's capabilities in a set of experiments based on use cases commonly found in edge computing systems research. Additionally, we show that the resource usage of our system is minimal and that it can run on resource-constrained devices.
en
dc.language.iso
en
-
dc.subject
Benchmarking
en
dc.subject
Cloud computing
en
dc.subject
Cluster management
en
dc.subject
Edge computing
en
dc.title
An End-to-End Framework for Benchmarking Edge-Cloud Cluster Management Techniques
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-6654-9115-0
-
dc.relation.doi
10.1109/IC2E55432.2022
-
dc.description.startpage
22
-
dc.description.endpage
28
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2022 IEEE International Conference on Cloud Engineering (IC2E)