<div class="csl-bib-body">
<div class="csl-entry">Heitzinger, T., Woedlinger, M., & Stork, D. G. (2022). Artist-specific style transfer for semantic segmentation of paintings: The value of large corpora of surrogate artworks. In <i>Proc. IS&T Int’l. Symp. on Electronic Imaging: Computer Vision and Image Analysis of Art</i> (pp. 186-1-186–6). https://doi.org/10.2352/EI.2022.34.13.CVAA-186</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139764
-
dc.description.abstract
Deep neural networks for semantic segmentation have recently outperformed other methods for natural images, partly due to the abundance of training data for this case. However, applying these networks to pictures from a different domain often leads to a significant drop in accuracy. Fine art paintings for highly stylized works, such as from Cubism or Expressionism, in particular, are challenging due to large deviations in shape and texture of certain objects when compared to natural images. In this paper, we demonstrate that style transfer can be used as a form of data augmentation during the training of CNN based semantic segmentation models to improve the accuracy of semantic segmentation models in art pieces of a specific artist. For this, we pick a selection of paintings from a specific style for the painters Egon Schiele, Vincent Van Gogh, Pablo Picasso and Willem de Kooning, create stylized training dataset by transferring artist-specific style to natural photographs and show that training the same segmentation network on a surrogate artworks improves the accuracy for fine art paintings. We also provide a dataset with pixel-level annotation of 60 fine art paintings to the public and for evaluation of our method.
-
dc.language.iso
en
-
dc.relation.ispartofseries
Electronic Imaging
-
dc.subject
Semantic Segmentation
en
dc.subject
Domain Adaption
en
dc.subject
Style Transfer
en
dc.subject
Art Analysis
en
dc.title
Artist-specific style transfer for semantic segmentation of paintings: The value of large corpora of surrogate artworks
-
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
186-1
-
dc.description.endpage
186-6
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proc. IS&T Int’l. Symp. on Electronic Imaging: Computer Vision and Image Analysis of Art
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Electronic Imaging
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.2352/EI.2022.34.13.CVAA-186
-
dc.description.numberOfPages
6
-
tuw.event.name
Computer Vision and Image Analysis of Art 2022 (CVAA2022)
-
tuw.event.startdate
17-01-2022
-
tuw.event.enddate
18-01-2022
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Heitzinger, Thomas
-
tuw.event.presenter
Woedlinger, Matthias
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0002-3129-5054
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology