<div class="csl-bib-body">
<div class="csl-entry">Estaji, A., & Sauter, T. (2022). Street Lighting Simulation for Energy Efficiency Improvement. In <i>2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)</i> (pp. 1–8). https://doi.org/10.1109/ETFA52439.2022.9921570</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139789
-
dc.description.abstract
Modernizing street lighting is a logical reaction to dynamic economic changes and energy prices. The idea for intelligent street lighting is simple, complete control over the street lights depending on the conditions. At the same time, the main objective of this system is to lower energy consumption and, consequently, less CO2 emission. The number of cities which have established new lighting systems is growing fast because it is environment-friendly and economical. Modern lighting systems have different levels of intelligence and apply different strategies for changing energy consumption patterns. The impact of changing the lighting logic is much less than using intelligent street lighting or switching from conventional lights to LEDs. However, the total energy consumption for public lighting is too high that it is worth investigating any possible way for energy efficiency improvement, even for a fraction of one percent. This research explains a simulation-based approach in three real-world implementations for energy efficiency improvement using Street Lighting Simulation. In our studies, smart street lighting provides %25 to %60 energy savings, and optimizing the lighting strategy brings up to %5 more energy efficiency.
en
dc.language.iso
en
-
dc.subject
AnyLogic
en
dc.subject
Auto-Configuration
en
dc.subject
Energy Efficiency
en
dc.subject
Simulation
en
dc.subject
Street Lighting
en
dc.title
Street Lighting Simulation for Energy Efficiency Improvement
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Universität für Weiterbildung Krems, Austria
-
dc.relation.isbn
978-1-6654-9996-5
-
dc.description.startpage
1
-
dc.description.endpage
8
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)
-
tuw.container.volume
2022-September
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publisher.doi
10.1109/ETFA52439.2022.9921570
-
dc.description.numberOfPages
8
-
tuw.event.name
2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)
en
tuw.event.startdate
06-09-2022
-
tuw.event.enddate
09-09-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Stuttgart
-
tuw.event.country
DE
-
tuw.event.institution
Universität Stuttgart
-
tuw.event.presenter
Sauter, Thilo
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik