<div class="csl-bib-body">
<div class="csl-entry">Khamis, M. A., Ngo, H. Q., Pichler, R., Suciu, D., & Wang, Y. R. (2022). Datalog in Wonderland. <i>SIGMOD RECORD</i>, <i>51</i>(2), 6–17. https://doi.org/10.1145/3552490.3552492</div>
</div>
-
dc.identifier.issn
0163-5808
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139803
-
dc.description.abstract
Modern data analytics applications, such as knowledge graph reasoning and machine learning, typically involve recursion through aggregation. Such computations pose great challenges to both system builders and theoreticians: first, to derive simple yet powerful abstractions for these computations; second, to define and study the semantics for the abstractions; third, to devise optimization techniques for these computations.
In recent work we presented a generalization of Datalog called Datalog, which addresses these challenges. Datalog is a simple abstraction, which allows aggregates to be interleaved with recursion, and retains much of the simplicity and elegance of Datalog. We define its formal semantics based on an algebraic structure called Partially Ordered Pre-Semirings, and illustrate through several examples how Datalog can be used for a variety of applications. Finally, we describe a new optimization rule for Datalog, called the FGH-rule, then illustrate the FGH-rule on several examples, including a simple magic-set rewriting, generalized semi-naïve evaluation, and a bill-of-material example, and briefly discuss the implementation of the FGH-rule and present some experimental validation of its effectiveness.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ASSOC COMPUTING MACHINERY
-
dc.relation.ispartof
SIGMOD RECORD
-
dc.subject
Knowledge Graph
en
dc.subject
Reasoning
en
dc.subject
Machine Learning
en
dc.subject
Data analytics applications
en
dc.title
Datalog in Wonderland
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
RelationalAI
-
dc.contributor.affiliation
RelationalAI
-
dc.contributor.affiliation
University of Washington, United States of America (the)
-
dc.contributor.affiliation
University of Washington, United States of America (the)
-
dc.description.startpage
6
-
dc.description.endpage
17
-
dc.relation.grantno
P30930-N35
-
dc.type.category
Original Research Article
-
tuw.container.volume
51
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
HyperTrac: hypergraph Decompositions and Tractability
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
SIGMOD RECORD
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3552490.3552492
-
dc.identifier.eissn
1943-5835
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-1760-122X
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Relational AI, Berkeley, USA
-
crisitem.author.dept
RelationalAI
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence