<div class="csl-bib-body">
<div class="csl-entry">Frühwirth, T., Preindl, T., & Kastner, W. (2022). Ontology for Rating Dependability Attributes. In <i>IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society</i> (pp. 1–6). https://doi.org/10.1109/IECON49645.2022.9968501</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139856
-
dc.description.abstract
An important field of application for the Internet of Things (IoT) is the area of monitoring and control, which imposes requirements on dependability. As devices in the IoT become increasingly capable, they can make use of concepts and technologies provided by the area of knowledge engineering to cope with these requirements. Existing work in this area mainly covers dependability threats and means, but dependability attributes are less well investigated.This paper presents a dependability rating ontology that enables the quantification of dependability attributes and, thus, makes them comparable. This is achieved by combining a dependability tree ontology with an ontology covering metrics and scales. IoT devices can use the dependability rating ontology, e.g., to improve their control algorithms, which is demonstrated on the switching optimization problem, a Smart Grid use-case.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
dependability attributes
en
dc.subject
dependability ontology
en
dc.subject
Internet of Things
en
dc.subject
knowledge representation
en
dc.title
Ontology for Rating Dependability Attributes
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9781665480253
-
dc.relation.doi
10.1109/IECON49645.2022
-
dc.description.startpage
1
-
dc.description.endpage
6
-
dc.relation.grantno
867276
-
dcterms.dateSubmitted
2022-06
-
dc.rights.holder
IEEE
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society
-
tuw.container.volume
2022-October
-
tuw.peerreviewed
true
-
tuw.project.title
Power System Cognification
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
tuw.publication.orgunit
E191-03 - Forschungsbereich Automation Systems
-
tuw.publisher.doi
10.1109/IECON49645.2022.9968501
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-8133-4747
-
tuw.author.orcid
0000-0001-7268-5393
-
tuw.event.name
48th Annual Conference of the Industrial Electronics Society - IECON 2022 Conference
en
tuw.event.startdate
17-10-2022
-
tuw.event.enddate
20-12-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Brussels
-
tuw.event.country
BE
-
tuw.event.presenter
Frühwirth, Thomas
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH