<div class="csl-bib-body">
<div class="csl-entry">Ganhör, C., Penz, D., Rekabsaz, N., Lesota, O., & Schedl, M. (2022). Unlearning Protected User Attributes in Recommendations with Adversarial Training. In <i>SIGIR ’22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval</i> (pp. 2142–2147). https://doi.org/10.1145/3477495.3531820</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139864
-
dc.description.abstract
Collaborative filtering algorithms capture underlying consumption patterns, including the ones specific to particular demographics or protected information of users, e.g., gender, race, and location. These encoded biases can influence the decision of a recommendation system (RS) towards further separation of the contents provided to various demographic subgroups, and raise privacy concerns regarding the disclosure of users' protected attributes. In this work, we investigate the possibility and challenges of removing specific protected information of users from the learned interaction representations of a RS algorithm, while maintaining its effectiveness. Specifically, we incorporate adversarial training into the state-of-the-art MultVAE architecture, resulting in a novel model, Adversarial Variational Auto-Encoder with Multinomial Likelihood (Adv-MultVAE), which aims at removing the implicit information of protected attributes while preserving recommendation performance. We conduct experiments on the MovieLens-1M and LFM-2b-DemoBias datasets, and evaluate the effectiveness of the bias mitigation method based on the inability of external attackers in revealing the users' gender information from the model. Comparing with baseline MultVAE, the results show that Adv-MultVAE, with marginal deterioration in performance (w.r.t. NDCG and recall), largely mitigates inherent biases in the model on both datasets.
en
dc.language.iso
en
-
dc.subject
adversarial training
en
dc.subject
bias mitigation
en
dc.subject
gender bias
en
dc.subject
recommendation
en
dc.title
Unlearning Protected User Attributes in Recommendations with Adversarial Training
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
2142
-
dc.description.endpage
2147
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
SIGIR '22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1145/3477495.3531820
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0003-1850-2626
-
tuw.event.name
SIGIR '22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
en
tuw.event.startdate
11-07-2022
-
tuw.event.enddate
15-07-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
ES
-
tuw.event.presenter
Ganhör, Christian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E185 - Institut für Computersprachen
-
crisitem.author.orcid
0000-0003-1850-2626
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering