<div class="csl-bib-body">
<div class="csl-entry">Nawratil, G. (2022). Multi-stable design of triangulated origami structures on cones of revolution. <i>Computer Aided Geometric Design</i>, <i>95</i>, Article 102105. https://doi.org/10.1016/j.cagd.2022.102105</div>
</div>
-
dc.identifier.issn
0167-8396
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139869
-
dc.description.abstract
It is well-known that the Kresling pattern of congruent triangles can be arranged either circularly on a cylinder of revolution or in a helical way. In both cases the resulting cylindrical structures are multi-stable. We generalize these arrangements with respect to cones of revolution, where our approach allows to construct structures, which snap between conical realizations whose apex angles serve as design parameters. In this context we also figure out shaky realizations, intervals for self-intersection free realizations and an interesting property related to the cross sectional area. Finally, we analyze these origami structures with respect to their capability to snap by means of the so-called snappability index.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Computer Aided Geometric Design
-
dc.subject
Flat-foldability
en
dc.subject
Kresling pattern
en
dc.subject
Multi-stability
en
dc.subject
Origami
en
dc.subject
Shakiness
en
dc.subject
Snapping
en
dc.title
Multi-stable design of triangulated origami structures on cones of revolution