<div class="csl-bib-body">
<div class="csl-entry">Lederer, P. L., & Merdon, C. (2022). Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations. <i>Journal of Numerical Mathematics</i>, <i>30</i>(4), 267–294. https://doi.org/10.1515/jnma-2021-0078</div>
</div>
-
dc.identifier.issn
1570-2820
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139888
-
dc.description.abstract
This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
WALTER DE GRUYTER GMBH
-
dc.relation.ispartof
Journal of Numerical Mathematics
-
dc.subject
a posteriori error estimators
en
dc.subject
adaptive mesh refinement
en
dc.subject
equilibrated fluxes
en
dc.subject
incompressible Stokes equations
en
dc.subject
mixed finite elements
en
dc.subject
pressure-robustness
en
dc.title
Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations