<div class="csl-bib-body">
<div class="csl-entry">Pfannerer, S. (2022). A refinement of the Murnaghan-Nakayama rule by descents for border strip tableaux. <i>Combinatorial Theory : CT</i>, <i>2</i>(2). https://doi.org/10.5070/C62257882</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139890
-
dc.description.abstract
Lusztig's fake degree is the generating polynomial for the major index of standard Young tableaux of a given shape. Results of Springer (1974) and James & Kerber (1984) imply that, mysteriously, its evaluation at a -th primitive root of unity yields the number of border strip tableaux with all strips of size , up to sign. This is essentially the special case of the Murnaghan-Nakayama rule for evaluating an irreducible character of the symmetric group at a rectangular partition. We refine this result to standard Young tableaux and border strip tableaux with a given number of descents. To do so, we introduce a new statistic for border strip tableaux, extending the classical definition of descents in standard Young tableaux. Curiously, it turns out that our new statistic is very closely related to a descent set for tuples of standard Young tableaux appearing in the quasisymmetric expansion of LLT polynomials given by Haglund, Haiman and Loehr (2005).
en
dc.description.sponsorship
Österr. Akademie der Wissenschaften
-
dc.language.iso
en
-
dc.publisher
University of California, eScholarship
-
dc.relation.ispartof
Combinatorial theory : CT
-
dc.subject
Border strip tableaux
en
dc.subject
descents
en
dc.subject
Murnaghan-Nakayama rule
en
dc.subject
fake degree
en
dc.title
A refinement of the Murnaghan-Nakayama rule by descents for border strip tableaux
en
dc.type
Article
en
dc.type
Artikel
de
dc.relation.grantno
25658
-
dc.type.category
Original Research Article
-
tuw.container.volume
2
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Rotationsinvariante diagrammatische Basen für Invariantenräume
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Combinatorial theory : CT
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.5070/C62257882
-
dc.date.onlinefirst
2022
-
dc.identifier.eissn
2766-1334
-
dc.description.numberOfPages
16
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie