<div class="csl-bib-body">
<div class="csl-entry">Tomovski, Ž., Gerhold, S., Bansal, D., & Soni, A. (2022). Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk. <i>Axioms</i>, <i>11</i>(10), Article 568. https://doi.org/10.3390/axioms11100568</div>
</div>
-
dc.identifier.issn
2075-1680
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139916
-
dc.description.abstract
We consider two parametric families of special functions: One is defined by a power series generalizing the classical Mathieu series, and the other one is a generalized Mathieu type power series involving factorials in its coefficients. Using criteria due to Fejér and Ozaki, we provide sufficient conditions for these functions to be close-to-convex or starlike inside the unit disk, and thus univalent. One of our proofs is assisted by symbolic computation.
en
dc.language.iso
en
-
dc.publisher
MDPI
-
dc.relation.ispartof
Axioms
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
close-to-convex function
en
dc.subject
generalized Mathieu-type series
en
dc.subject
starlike function
en
dc.subject
univalent function
en
dc.title
Geometric Properties of Some Generalized Mathieu Power Series inside the Unit Disk