<div class="csl-bib-body">
<div class="csl-entry">Cho, J., Rossman, W., & Seno, T. (2022). Infinitesimal Darboux transformation and semi-discrete mKdV equation. <i>Nonlinearity</i>, <i>35</i>, 2134–2146. https://doi.org/10.1088/1361-6544/ac591f</div>
</div>
-
dc.identifier.issn
0951-7715
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139937
-
dc.description.abstract
We connect certain continuous motions of discrete planar curves resulting in semi-discrete potential Korteweg-de Vries (mKdV) equation with Darboux transformations of smooth planar curves. In doing so, we define infinitesimal Darboux transformations that include the aforementioned motions, and also give an alternate geometric interpretation for establishing the semi-discrete potential mKdV equation.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
IOP PUBLISHING LTD
-
dc.relation.ispartof
Nonlinearity
-
dc.subject
discrete differential geometry
en
dc.subject
infinitesimal Darboux transformation
en
dc.subject
semi-discrete mKdV equation
en
dc.title
Infinitesimal Darboux transformation and semi-discrete mKdV equation