<div class="csl-bib-body">
<div class="csl-entry">Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2022). Weighted Analytic Regularity for the Integral Fractional Laplacian in Polygons. <i>SIAM Journal on Mathematical Analysis</i>, <i>54</i>(6), 6323–6357. https://doi.org/10.1137/21M146569X</div>
</div>
-
dc.identifier.issn
0036-1410
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139971
-
dc.description.abstract
We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities on dyadic decompositions of vertex, edge, and vertex-edge neighborhoods.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Mathematical Analysis
-
dc.subject
fractional Laplacian
en
dc.subject
analytic regularity
en
dc.subject
corner domains
en
dc.subject
eighted Sobolev spaces
en
dc.title
Weighted Analytic Regularity for the Integral Fractional Laplacian in Polygons
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
6323
-
dc.description.endpage
6357
-
dc.relation.grantno
F 6507-N36
-
dc.type.category
Original Research Article
-
tuw.container.volume
54
-
tuw.container.issue
6
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Numerische Methoden Höherer Ordnung für nichtlokale Operatoren