<div class="csl-bib-body">
<div class="csl-entry">Erath, C., Gantner, G., & Praetorius, D. (2020). Optimal convergence behavior of adaptive FEM driven by simple (h − h/2)-type error estimators. <i>Computers and Mathematics with Applications</i>, <i>79</i>(3), 623–642. https://doi.org/10.1016/j.camwa.2019.07.014</div>
</div>
-
dc.identifier.issn
0898-1221
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140001
-
dc.description.abstract
For some Poisson-type model problem, we prove that adaptive FEM driven by the (h − h/2)-type error estimators from [Ferraz-Leite, Ortner, Praetorius, Numer. Math. 116 (2010)] leads to convergence with optimal algebraic convergence rates. Besides the implementational simplicity, another striking feature of these estimators is that they can provide guaranteed lower bounds for the energy error with known efficiency constant 1.
en
dc.language.iso
en
-
dc.relation.ispartof
Computers and Mathematics with Applications
-
dc.subject
Modeling and Simulation
-
dc.subject
Computational Mathematics
-
dc.subject
Computational Theory and Mathematics
-
dc.subject
local mesh-refinement
-
dc.subject
adaptive algorithm
-
dc.subject
finite element method
-
dc.subject
a posteriori error estimators
-
dc.subject
optimal convergence rates.
-
dc.title
Optimal convergence behavior of adaptive FEM driven by simple (h − h/2)-type error estimators
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
623
-
dc.description.endpage
642
-
dc.type.category
Original Research Article
-
tuw.container.volume
79
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Computers and Mathematics with Applications
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1016/j.camwa.2019.07.014
-
dc.date.onlinefirst
2019-07-23
-
dc.identifier.eissn
1873-7668
-
dc.description.numberOfPages
20
-
tuw.author.orcid
0000-0001-7981-3407
-
tuw.author.orcid
0000-0002-0324-5674
-
tuw.author.orcid
0000-0002-1977-9830
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing