<div class="csl-bib-body">
<div class="csl-entry">Lederer, P. L., Lehrenfeld, C., & Schöberl, J. (2020). Divergence-free tangential finite element methods for incompressible flows on surfaces. <i>International Journal for Numerical Methods in Engineering</i>, <i>121</i>(11), 2503–2533. https://doi.org/10.1002/nme.6317</div>
</div>
-
dc.identifier.issn
0029-5981
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140029
-
dc.description.abstract
In this work we consider the numerical solution of incompressible flows on two-dimensional manifolds. Whereas the compatibility demands of the velocity and the pressure spaces are known from the flat case one further has to deal with the approximation of a velocity field that lies only in the tangential space of the given geometry. Abandoning H¹-conformity allows us to construct finite elements which are—due to an application of the Piola transformation—exactly tangential. To reintroduce continuity (in a weak sense) we make use of (hybrid) discontinuous Galerkin techniques. To further improve this approach, H(divΓ)-conforming finite elements can be used to obtain exactly divergence-free velocity solutions. We present several new finite element discretizations. On a number of numerical examples we examine and compare their qualitative properties and accuracy.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
International Journal for Numerical Methods in Engineering
-
dc.subject
Applied Mathematics
en
dc.subject
General Engineering
en
dc.subject
Numerical Analysis
en
dc.title
Divergence-free tangential finite element methods for incompressible flows on surfaces
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Göttingen, Germany
-
dc.description.startpage
2503
-
dc.description.endpage
2533
-
dc.type.category
Original Research Article
-
tuw.container.volume
121
-
tuw.container.issue
11
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
dcterms.isPartOf.title
International Journal for Numerical Methods in Engineering
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1002/nme.6317
-
dc.identifier.eissn
1097-0207
-
dc.description.numberOfPages
31
-
tuw.author.orcid
0000-0003-1875-7442
-
tuw.author.orcid
0000-0003-0170-8468
-
tuw.author.orcid
0000-0002-1250-5087
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing