<div class="csl-bib-body">
<div class="csl-entry">Daus, E. S., Jüngel, A., & Tang, B. Q. (2019). Exponential Time Decay of Solutions to Reaction-Cross-Diffusion Systems of Maxwell–Stefan Type. <i>Archive for Rational Mechanics and Analysis</i>, <i>235</i>(2), 1059–1104. https://doi.org/10.1007/s00205-019-01439-9</div>
</div>
-
dc.identifier.issn
0003-9527
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140036
-
dc.description.abstract
The large-time asymptotics of weak solutions to Maxwell–Stefan diffusion
systems for chemically reacting fluids with different molar masses and reversible
reactions are investigated. The diffusion matrix of the system is generally neither
symmetric nor positive definite, but the equations admit a formal gradient-flow
structure which provides entropy (free energy) estimates. The main result is the
exponential decay to the unique equilibrium with a rate that is constructive up to a
finite-dimensional inequality. The key elements of the proof are the existence of a
unique detailed-balance equilibrium and the derivation of an inequality relating the
entropy and the entropy production. The main difficulty comes from the fact that the
reactions are represented by molar fractions while the conservation laws hold for the
concentrations. The idea is to enlarge the space of n partial concentrations by adding
the total concentration, viewed as an independent variable, thus working with n +1
variables. Further results concern the existence of global bounded weak solutions
to the parabolic system and an extension of the results to complex-balance systems.
en
dc.language.iso
en
-
dc.relation.ispartof
Archive for Rational Mechanics and Analysis
-
dc.subject
Analysis
-
dc.subject
Mechanical Engineering
-
dc.subject
Mathematics (miscellaneous)
-
dc.title
Exponential Time Decay of Solutions to Reaction-Cross-Diffusion Systems of Maxwell–Stefan Type
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1059
-
dc.description.endpage
1104
-
dc.type.category
Original Research Article
-
tuw.container.volume
235
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Archive for Rational Mechanics and Analysis
-
tuw.publication.orgunit
E101-01 - Forschungsbereich Analysis
-
tuw.publisher.doi
10.1007/s00205-019-01439-9
-
dc.identifier.eissn
1432-0673
-
dc.description.numberOfPages
46
-
tuw.author.orcid
0000-0003-0633-8929
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing