<div class="csl-bib-body">
<div class="csl-entry">Függer, M., Najvirt, R., Nowak, T., & Schmid, U. (2020). A Faithful Binary Circuit Model. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i>, <i>39</i>(10), 2784–2797. https://doi.org/10.1109/tcad.2019.2937748</div>
</div>
-
dc.identifier.issn
0278-0070
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140078
-
dc.description.abstract
Függer et al. (2016) proved that no existing digital circuit model, including those based on pure and inertial delay channels, faithfully captures glitch propagation: for the short-pulse filtration (SPF) problem similar to that of building a one-shot inertial delay, they showed that every member of the broad class of bounded single-history channels either contradicts the unsolvability of SPF in bounded time or the solvability of SPF in unbounded time in physical circuits. In this article, we propose binary circuit models based on novel involution channels that do not suffer from this deficiency. Namely, in sharp contrast to bounded single-history channels, SPF cannot be solved in bounded time with involution channels, whereas it is easy to provide an unbounded SPF implementation. Hence, binary-valued circuit models based on involution channels allow to solve SPF precisely when this is possible in physical circuits. Additionally, using both SPICE simulations and physical measurements of an inverter chain instrumented by high-speed analog amplifiers, we demonstrate that our model provides good modeling accuracy with respect to real circuits as well. Consequently, our involution channel model is not only a promising basis for sound formal verification but also allows to seamlessly improve existing dynamic timing analysis.
en
dc.language.iso
en
-
dc.relation.ispartof
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Software
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.subject
glitch propagation
-
dc.subject
Binary circuit models
-
dc.title
A Faithful Binary Circuit Model
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
2784
-
dc.description.endpage
2797
-
dc.type.category
Original Research Article
-
tuw.container.volume
39
-
tuw.container.issue
10
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/tcad.2019.2937748
-
dc.identifier.eissn
1937-4151
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0003-2987-5137
-
tuw.author.orcid
0000-0003-1690-9342
-
tuw.author.orcid
0000-0001-9831-8583
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
Computer Engineering (CE)
de
wb.facultyfocus
Computer Engineering (CE)
en
wb.facultyfocus.faculty
E180
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E182 - Institut für Technische Informatik
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems