<div class="csl-bib-body">
<div class="csl-entry">Stipsitz, M., Zysset, P. K., & Pahr, D. H. (2020). Efficient materially nonlinear 𝜇FE solver for simulations of trabecular bone failure. <i>Biomechanics and Modeling in Mechanobiology</i>, <i>19</i>(3), 861–874. https://doi.org/10.1007/s10237-019-01254-x</div>
</div>
-
dc.identifier.issn
1617-7959
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140102
-
dc.description.abstract
An efficient solver for large-scale linear μFE simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of 36μm. Suitable material parameters were identified based on two biopsies by comparison with axial tension and compression experiments. The good parallel performance and low memory footprint of the solver were preserved. Excellent correlation of the maximum apparent stress was found between simulations and experiments (R2>0.97). The development of local damage regions was observable due to the nonlinear nature of the simulations. A novel elasticity limit was proposed based on the local damage information. The elasticity limit was found to be lower than the 0.2% yield point. Systematic differences in the yield behavior of biopsies under apparent compression and tension loading were observed. This indicates that damage distributions could lead to more insight into the failure mechanisms of trabecular bone.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Biomechanics and Modeling in Mechanobiology
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Modeling and Simulation
en
dc.subject
Mechanical Engineering
en
dc.subject
Biotechnology
en
dc.title
Efficient materially nonlinear 𝜇FE solver for simulations of trabecular bone failure