<div class="csl-bib-body">
<div class="csl-entry">Jakub, Z., Hulva, J., Ryan, P. T. P., Duncan, D. A., Payne, D. J., Bliem, R., Ulreich, M., Hofegger, P., Kraushofer, F., Meier, M., Schmid, M., Diebold, U., & Parkinson, G. S. (2020). Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe₃O₄(001) model catalyst. <i>Nanoscale</i>, <i>12</i>(10), 5866–5875. https://doi.org/10.1039/c9nr10087c</div>
</div>
-
dc.identifier.issn
2040-3364
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140368
-
dc.description.abstract
The structure of a catalyst often changes in reactive environments, and following the structural evolutionis crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present anatomic-scale study of CO oxidation on a model Rh/Fe3O4(001)"single-atom"catalyst, which has a verydifferent evolution depending on which of the two reactants, O2or CO, is adsorbedfirst. Using tempera-ture-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-rayphotoelectron spectroscopy (XPS), we show that O2destabilizes Rh atoms, leading to the formation ofRhxOyclusters; these catalyze CO oxidationviaa Langmuir-Hinshelwood mechanism at temperatures aslow as 200 K. If CO adsorbsfirst, the system is poisoned for direct interaction with O2, and CO oxidationis dominated by a Mars-van-Krevelen pathway at 480 K.
en
dc.language.iso
en
-
dc.relation.ispartof
Nanoscale
-
dc.subject
General Materials Science
-
dc.title
Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe₃O₄(001) model catalyst