<div class="csl-bib-body">
<div class="csl-entry">A. Leite, R., Gschwandtner, T., Miksch, S., Gstrein, E., & Kuntner, J. (2020). NEVA: Visual Analytics to Identify Fraudulent Networks. <i>Computer Graphics Forum</i>, <i>39</i>(6), 344–359. https://doi.org/10.1111/cgf.14042</div>
</div>
-
dc.identifier.issn
0167-7055
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140665
-
dc.description.abstract
Trust‐ability, reputation, security and quality are the main concerns for public and private financial institutions. To detect fraudulent behaviour, several techniques are applied pursuing different goals. For well‐defined problems, analytical methods are applicable to examine the history of customer transactions. However, fraudulent behaviour is constantly changing, which results in ill‐defined problems. Furthermore, analysing the behaviour of individual customers is not sufficient to detect more complex structures such as networks of fraudulent actors. We propose NEVA (Network dEtection with Visual Analytics), a Visual Analytics exploration environment to support the analysis of customer networks in order to reduce false‐negative and false‐positive alarms of frauds. Multiple coordinated views allow for exploring complex relations and dependencies of the data. A guidance‐enriched component for network pattern generation, detection and filtering support exploring and analysing the relationships of nodes on different levels of complexity. In six expert interviews, we illustrate the applicability and usability of NEVA.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Computer Graphics Forum
-
dc.subject
visual analytics
-
dc.subject
visualization
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.subject
financial fraud detection
-
dc.title
NEVA: Visual Analytics to Identify Fraudulent Networks
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
344
-
dc.description.endpage
359
-
dc.type.category
Original Research Article
-
tuw.container.volume
39
-
tuw.container.issue
6
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Computer Graphics Forum
-
tuw.publication.orgunit
E193-07 - Forschungsbereich Visual Analytics
-
tuw.publisher.doi
10.1111/cgf.14042
-
dc.identifier.eissn
1467-8659
-
dc.description.numberOfPages
16
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Andere Naturwissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1070
-
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
de
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.orcid
0000-0003-4427-5703
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology