<div class="csl-bib-body">
<div class="csl-entry">Liao-McPherson, D., Nicotra, M. M., Dontchev, A. L., Kolmanovsky, I. V., & Veliov, V. (2020). Sensitivity-Based Warmstarting for Nonlinear Model Predictive Control With Polyhedral State and Control Constraints. <i>IEEE Transactions on Automatic Control</i>, <i>65</i>(10), 4288–4294. https://doi.org/10.1109/tac.2019.2954359</div>
</div>
-
dc.identifier.issn
0018-9286
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140706
-
dc.description.abstract
Model predictive control (MPC) is of increasing interest in applications for constrained control of multivariable systems. However, one of the major obstacles to its broader use is the computation time and effort required to solve a possibly non-convex optimal control problem (OCP) online. This paper introduces a
sensitivity-based warmstarting strategy for systems with nonlinear dynamics and polyhedral constraints with the goal of reducing the computational footprint of MPC controllers. It predicts changes in the solution of the parameterized OCP as the parameter varies, by calculating the semiderivative of the solution. We apply the theory of variational inequalities over polyhedral convex sets, thus avoiding restrictive conditions regarding the activity status of the constraints. A numerical study featuring MPC applied to unmanned aerial vehicles illustrates the proposed approach.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Automatic Control
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Computer Science Applications
-
dc.subject
Control and Systems Engineering
-
dc.title
Sensitivity-Based Warmstarting for Nonlinear Model Predictive Control With Polyhedral State and Control Constraints
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Colorado Boulder, United States of America (the)
-
dc.contributor.affiliation
University of Michigan–Ann Arbor, United States of America (the)
-
dc.description.startpage
4288
-
dc.description.endpage
4294
-
dc.type.category
Original Research Article
-
tuw.container.volume
65
-
tuw.container.issue
10
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Automatic Control
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.1109/tac.2019.2954359
-
dc.identifier.eissn
1558-2523
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-5675-5635
-
tuw.author.orcid
0000-0003-0456-9766
-
tuw.author.orcid
0000-0003-3160-7828
-
tuw.author.orcid
0000-0002-7225-4160
-
tuw.author.orcid
0000-0001-6737-1250
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Colorado Boulder
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
University of Michigan–Ann Arbor
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik