<div class="csl-bib-body">
<div class="csl-entry">Dontchev, A., Kolmanovsky, I., Krastanov, M., Veliov, V., & Phan, V. (2020). Approximating optimal finite horizon feedback by model predictive control. <i>Systems and Control Letters</i>, <i>139</i>(104666), 104666. https://doi.org/10.1016/j.sysconle.2020.104666</div>
</div>
-
dc.identifier.issn
0167-6911
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/140707
-
dc.description.abstract
We consider a finite-horizon continuous-time optimal control problem with nonlinear dynamics, an integral cost, control constraints and a time-varying parameter which represents perturbations or uncertainty. After discretizing the problem we employ a model predictive control (MPC) algorithm for this finite horizon optimal control problem by first solving the problem over the entire time horizon and then applying the first element of the optimal discrete-time control sequence, being a constant in time function, to the continuous-time system over the sampling interval. Then the state at the end of the
sampling interval is measured (estimated) with certain error, and the process is repeated at each step over the remaining horizon. As a result, we obtain a piecewise constant
function in time as control which can be regarded as an approximation to the optimal feedback control of the continuous-time system. In our main result we derive an estimate of the difference between the MPC-generated solution and the optimal feedback solution, both obtained for the same value of the perturbation parameter, in terms of the step-size of the discretization and the measurement error. Numerical results illustrating our estimates are reported.
en
dc.language.iso
en
-
dc.relation.ispartof
Systems and Control Letters
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Control and Systems Engineering
-
dc.subject
General Computer Science
-
dc.subject
Mechanical Engineering
-
dc.subject
error estimate
-
dc.subject
model predictive control
-
dc.subject
optimal feedback control
-
dc.subject
discrete approximations
-
dc.subject
parameter uncertainty
-
dc.title
Approximating optimal finite horizon feedback by model predictive control
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
104666
-
dc.type.category
Original Research Article
-
tuw.container.volume
139
-
tuw.container.issue
104666
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
dcterms.isPartOf.title
Systems and Control Letters
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.1016/j.sysconle.2020.104666
-
dc.identifier.eissn
1872-7956
-
dc.description.numberOfPages
9
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik