<div class="csl-bib-body">
<div class="csl-entry">Gopalakrishnan, J., Hochsteger, M., Schöberl, J., & Wintersteiger, C. (2020). An Explicit Mapped Tent Pitching Scheme for Maxwell Equations. In <i>Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018</i> (pp. 359–369). Springer. https://doi.org/10.1007/978-3-030-39647-3_28</div>
</div>
-
dc.identifier.issn
1439-7358
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141062
-
dc.description.abstract
An Explicit Mapped Tent Pitching Scheme forMaxwell EquationsJay Gopalakrishnan, Matthias Hochsteger, Joachim Sch ̈oberl, and ChristophWintersteigerAbstractWe present a new numerical method for solving time dependent Maxwellequations, which is also suitable for general linear hyperbolic equations. It is basedon an unstructured partitioning of the spacetime domain into tent-shaped regionsthat respect causality. Provided that an approximate solution is available at the tentbottom, the equation can be locally evolved up to the top of the tent. By mappingtents to a domain which is a tensor product of a spatial domain with a time in-terval, it is possible to construct a fully explicit scheme that advances the solutionthrough unstructured meshes. This work highlights a difficulty that arises when stan-dard explicit Runge Kutta schemes are used in this context and proposes an alter-native structure-aware Taylor time-stepping technique. Thus explicit methods areconstructed that allow variable time steps and local refinements without compro-mising high order accuracy in space and time. These Mapped Tent Pitching (MTP)schemes lead to highly parallel algorithms, which utilize modern computer archi-tectures extremely well.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computational Science and Engineering
-
dc.title
An Explicit Mapped Tent Pitching Scheme for Maxwell Equations
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018
-
dc.relation.isbn
978-3-030-39647-3
-
dc.relation.doi
10.1007/978-3-030-39647-3
-
dc.relation.issn
1439-7358
-
dc.description.startpage
359
-
dc.description.endpage
369
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2197-7100
-
tuw.booktitle
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018
-
tuw.container.volume
134
-
tuw.journal.peerreviewed
false
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computational Science and Engineering
-
tuw.relation.publisher
Springer
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1007/978-3-030-39647-3_28
-
dc.description.numberOfPages
11
-
wb.sci
false
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing