<div class="csl-bib-body">
<div class="csl-entry">Aguilera, J. P., & Müller, S. (2020). The Consistency Strength of Long Projective Determinacy. <i>Journal of Symbolic Logic</i>, <i>85</i>(1), 338–366. https://doi.org/10.1017/jsl.2019.78</div>
</div>
-
dc.identifier.issn
0022-4812
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141190
-
dc.description.abstract
We determine the consistency strength of determinacy for projective games of length ω². Our main theorem is that Π¹n₊₁-determinacy for games of length ω² implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies A=R and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.
We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω² with payoff in RΠ¹₁ or with σ-projective payoff.
en
dc.language.iso
en
-
dc.publisher
CAMBRIDGE UNIV PRESS
-
dc.relation.ispartof
Journal of Symbolic Logic
-
dc.subject
mouse
en
dc.subject
infinite game
en
dc.subject
Determinacy
en
dc.subject
Inner model theory
en
dc.subject
large cardinal
en
dc.subject
long games
en
dc.title
The Consistency Strength of Long Projective Determinacy
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Vienna, Austria
-
dc.description.startpage
338
-
dc.description.endpage
366
-
dc.type.category
Original Research Article
-
tuw.container.volume
85
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Symbolic Logic
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publisher.doi
10.1017/jsl.2019.78
-
dc.date.onlinefirst
2019-11-18
-
dc.identifier.eissn
1943-5886
-
dc.description.numberOfPages
29
-
tuw.author.orcid
0000-0002-7224-187X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.orcid
0000-0002-7224-187X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie