<div class="csl-bib-body">
<div class="csl-entry">Banderier, C., Marchal, P., & Wallner, M. (2020). Periodic Pólya urns, the density method and asymptotics of Young tableaux. <i>Annals of Probability</i>, <i>48</i>(4). https://doi.org/10.1214/19-aop1411</div>
</div>
-
dc.identifier.issn
0091-1798
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141216
-
dc.description.abstract
Pólya urns are urns where at each unit of time a ball is drawn and replaced with some other balls according to its colour. We introduce a more general model: the replacement rule depends on the colour of the drawn ball and the value of the time (modp). We extend the work of Flajolet et al. on Pólya urns: the generating function encoding the evolution of the urn is studied by methods of analytic combinatorics. We show that the initial partial differential equations lead to ordinary linear differential equations which are related to hypergeometric functions (giving the exact state of the urns at time n). When the time goes to infinity, we prove that these periodic Pólya urns have asymptotic fluctuations which are described by a product of generalized gamma distributions. With the additional help of what we call the density method (a method which offers access to enumeration and random generation of poset structures), we prove that the law of the southeast corner of a triangular Young tableau follows asymptotically a product of generalized gamma distributions. This allows us to tackle some questions related to the continuous limit of random Young tableaux and links with random surfaces.
en
dc.language.iso
en
-
dc.relation.ispartof
Annals of Probability
-
dc.subject
Statistics and Probability
-
dc.subject
Statistics, Probability and Uncertainty
-
dc.title
Periodic Pólya urns, the density method and asymptotics of Young tableaux
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
48
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Annals of Probability
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
tuw.publisher.doi
10.1214/19-aop1411
-
dc.identifier.eissn
2168-894X
-
dc.description.numberOfPages
45
-
tuw.author.orcid
0000-0001-8581-449X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.orcid
0000-0001-8581-449X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie