<div class="csl-bib-body">
<div class="csl-entry">Genitrini, A., Gittenberger, B., Genitrini, A., Kauers, M., & Wallner, M. (2020). Asymptotic enumeration of compacted binary trees of bounded right height. <i>Journal of Combinatorial Theory, Series A</i>, <i>172</i>, Article 105177. https://doi.org/10.1016/j.jcta.2019.105177</div>
</div>
-
dc.identifier.issn
0097-3165
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141217
-
dc.description.abstract
A compacted binary tree is a graph created from a binary tree such that repeatedly occurring subtrees in the original tree are represented by pointers to existing ones, and hence every subtree is unique. Such representations form a special class of directed acyclic graphs. We are interested in the asymptotic number of compacted trees of given size, where the size of a compacted tree is given by the number of its internal nodes. Due to its superexponential growth this problem poses many difficulties. Therefore we restrict our investigations to compacted trees of bounded right height, which is the maximal number of edges going to the right on any path from the root to a leaf.
We solve the asymptotic counting problem for this class as well as a closely related, further simplified class.
For this purpose, we develop a calculus on exponential generating functions for compacted trees of bounded right height and for relaxed trees of bounded right height, which differ from compacted trees by dropping the above described uniqueness condition. This enables us to derive a recursively defined sequence of differential equations for the exponential generating functions. The coefficients can then be determined by performing a singularity analysis of the solutions of these differential equations.
Our main results are the computation of the asymptotic numbers of relaxed as well as compacted trees of bounded right height and given size, when the size tends to infinity.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Combinatorial Theory, Series A
-
dc.subject
Theoretical Computer Science
-
dc.subject
Computational Theory and Mathematics
-
dc.subject
Discrete Mathematics and Combinatorics
-
dc.title
Asymptotic enumeration of compacted binary trees of bounded right height
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
172
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Combinatorial Theory, Series A
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
tuw.publisher.doi
10.1016/j.jcta.2019.105177
-
dc.identifier.articleid
105177
-
dc.identifier.eissn
1096-0899
-
dc.description.numberOfPages
49
-
tuw.author.orcid
0000-0001-8581-449X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
Artikel
-
item.openairetype
Article
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.orcid
0000-0001-8581-449X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie